Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations

نویسندگان

  • Anureet Saxena
  • Pierre Bonami
  • Jon Lee
چکیده

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and non-convex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the lift-and-project methodology. In particular, we propose new methods for generating valid inequalities by using the equation Y = xx . We use the concave constraint 0 < Y − xx to derive disjunctions of two types. The first ones are directly derived from the eigenvectors of the matrix Y − xx with positive eigenvalues, the second type of disjunctions are obtained by combining several eigenvectors in order to minimize the width of the disjunction. We also use the convex SDP constraint Y − xx < 0 to derive convex quadratic cuts, and we combine both approaches in a cutting plane algorithm. We present computational results to illustrate our findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations

A common way to produce a convex relaxation of a Mixed Integer Quadratically Constrained Program (MIQCP) is to lift the problem into a higher dimensional space by introducing variables Yij to represent each of the products xixj of variables appearing in a quadratic form. One advantage of such extended relaxations is that they can be efficiently strengthened by using the (convex) SDP constraint ...

متن کامل

Disjunctive Cuts for Non-convex Mixed Integer Quadratically Constrained Programs

This paper addresses the problem of generating strong convex relaxations of Mixed Integer Quadratically Constrained Programming (MIQCP) problems. MIQCP problems are very difficult because they combine two kinds of non-convexities: integer variables and nonconvex quadratic constraints. To produce strong relaxations of MIQCP problems, we use techniques from disjunctive programming and the liftand...

متن کامل

Perspective reformulations of mixed integer nonlinear programs with indicator variables

We study mixed integer nonlinear programs (MINLP)s that are driven by a collection of indicator variables where each indicator variable controls a subset of the decision variables. An indicator variable, when it is “turned off”, forces some of the decision variables to assume fixed values, and, when it is “turned on”, forces them to belong to a convex set. Many practical MINLPs contain integer ...

متن کامل

Perspective Relaxation of Minlps with Indicator Variables

We study mixed integer nonlinear programs (MINLP) that are driven by a collection of indicator variables where each indicator variable controls a subset of the decision variables. An indicator variable, when it is “turned off”, forces some of the decision variables to assume a fixed value, and, when it is “turned on”, forces them to belong to a convex set. Most of the integer variables in known...

متن کامل

Robust SOS-Convex Polynomial Programs: Exact SDP Relaxations

This paper studies robust solutions and semidefinite linear programming (SDP) relaxations of a class of convex polynomial optimization problems in the face of data uncertainty. The class of convex optimization problems, called robust SOS-convex polynomial optimization problems, includes robust quadratically constrained convex optimization problems and robust separable convex polynomial optimiza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2010